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Abstract

Growth in biological tissue depends upon cascades of complex biochemical reactions in-
volving several species, as well as their transport through the extra cellular matrix and
diffusion across cell membranes. In this work, a theoretical and numerical framework for the
macroscopic treatment of growth is formulated within the context of open system continuum
thermodynamics. Assumptions central to classical mechanics being too restrictive to cap-
ture such detail, this treatment involves the introduction of additional quantities (including
mass sources/sinks, mass fluxes, terms for energy and momentum transfer between species)
and deduces implications for balance laws. The framework, consistent with classical mixture
theory, accounts for the multiple inter-converting and interacting species present in the tis-
sue. Systematic adherence to fundamental physical principles, such as frame indifference of
the response in the reference configuration and non-violation of the dissipation inequality,
result in constitutive laws whose forms are clearly motivated and arise naturally from the
treatment. Notably, the transport of the extra cellular fluid relative to the matrix is shown
to be driven by the gradients of stress, concentration and chemical potential—a coupling of
mass transport and mechanics that emerges directly.

A finite element formulation employing a staggered scheme is implemented to solve the
coupled partial differential equations that arise from the theory. Nonlinear projection meth-
ods are utilised to handle incompressibility, mixed methods for stress-gradient driven fluxes
and energy-momentum conserving algorithms are used for dynamics. Our current tissue
of interest being engineered in vitro tendon, the numerical examples are in this context.
The examples serve to demonstrate aspects of the coupled phenomena as the tissue grows.
The classes of initial and boundary conditions imposed, and model geometry match paral-
lel experiments (which form another integral part of a larger project studying growth and
remodelling of engineered tissues). Representatively, concentration or flux boundary condi-
tions (tissue exposed to fluid in a bath, fluid injected in at the boundary) are imposed for
the balance of mass governing the fluid phase. Conditions in an experiment being consistent
with specification of quantities in the current configuration, noteworthy differences that arise
when solving these equations in terms of quantities in this configuration, as opposed to the
reference configuration, where the equations are initially developed, are accentuated.

During the course of applying the theory to our system of interest, various meaningful
modelling choices are made to tailor it to be representative of tendon constructs. While
this tends to hint at a loss of generality, it is important to recognise that the fundamental
theory and physical principles employed are still applicable to a larger class of problems,
both from biology (injury mechanisms, wound healing, scarring and surgical repair, ...) as
well as from other diverse fields (from porous soil mechanics, to diffusion of air through
anisotropic rubber materials in automobile tyres). With further refinements to the theory
and concurrent maturation of the resulting computational framework, it is of future interest
to extend the application of the theory to other classes of problems.
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Chapter 1

Introduction

1.1 Specific goals

The fundamental objectives of this research project are as follows:

e Formulate a sufficiently general and detailed continuum field theory for macroscopic
growth, which includes a complete treatment of mass transport coupled with mechan-
ics, and implement a demonstrative numerical scheme.

e Make systematic and physiologically relevant modelling choices to tailor this general
formulation to better represent our current tissue of interest, engineered tendon con-
structs, and use it to model and predict the response of the same.

1.2 Background and motivation

The processes involved in the development of biological tissue, though numerous and in-
volving several cascades of complex interactions, are generally broken down into the distinct
processes of growth, remodelling, and morphogenesisin biomechanics literature [Taber, 1995].
This present work treats these processes as mathematically independent and its focus,
growth, is defined to be an addition! of mass through the processes of mass transport and
biochemical reactions. Additionally, this is a continuum treatment at a macroscopic scale,
rather than at a cellular or sub-cellular level.

Recognising the complexity of the system presented (that it is open with respect to
mass and energy, and contains numerous species which are capable of interacting and
inter-converting) and the limitations of classical mechanics, additional terms (scalar mass
sources/sinks, vectorial mass fluxes and terms for momentum and energy transfer between
species) are introduced enhancing classical balance laws. The complex cascades of bio-

LOr depletion, if one is dealing with the converse process of resorption.



Figure 1.1: Engineered tendon constructs [Calve et al., 2004].

chemical reactions are treated in an elementary fashion, using source-sink terms to govern
inter-conversion and mass fluxes that supply nutrient and remove byproducts.

In the context of biological growth, the notion of a mass source was first introduced
in [Cowin and Hegedus, 1976]. The notion of a mass flux is a more recent introduction
[Epstein and Maugin, 2000], but this work regarded fluxes purely as irreversible fluxes of
momentum and entropy. In [Kuhl and Steinmann, 2003|, configurational forces motivate
mass flux where the transported species is the same material as the tissue itself. These
few cited examples of previous work are just a subset of a large body of theoretical and
computational literature in this area. But, while the details vary, the body of literature
represented by these works is largely based upon a single species undergoing transport and
being produced/annihilated.

In addition to the possibility of multiple species undergoing cascades of reactions, the full
range of driving forces for mass transport, such as chemical potential gradients, stress gra-
dients, external body forces such as gravity, has not been systematically treated previously.
Most previous coupling between transport and mechanics has been through growth-induced
residual stress, as described in Section 2.1.4. As indicated at the outset, this work is aimed
at a complete treatment mass transport, coupled with mechanics, for the growth problem.

Though the formulation is applicable to a large class of open systems with multiple species
potentially participating in reactions, here it is used to model and predict the response and
evolution of one specific tissue of interest to us, our engineered tendon constructs. These
are functionally immature tendons formed by the self assembly of tendon fibroblasts in vitro
[Calve et al., 2004]. Figure 1.1 shows a sample construct 15 days after it has been plated.
During the course of development of this tissue, it undergoes numerous complex processes,
but for the purposes of this growth model, we are focused on the evolution of concentrations
of substances such as collagen (see Figure 1.2), as well as their dependence on mechanics.

There are compelling clinical reasons to study tendons. Tendons consist mostly of col-
lagen and perhaps provide the simplest physiologically relevant setting to understand the
chemical and mechanical factors affecting proper collagen deposition. Collagen is the most
important structural component of soft biotissue. Errors in collagen deposition cause im-
portant types of tissue dysfunction ranging from cardiomyopathy (hypertrophy of collagen
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Figure 1.2: The evolution of collagen concentration with age [Calve et al.].

makes the heart too stiff to undergo proper volumetric change) to hypertrophic scarring in
burns (where the morphology of collagen is whirled rather than aligned in overly stiff scars).

Additionally, there are a large number of musculoskelital injuries each year which result in
damage to soft tissues, including tendon. For tendons damaged beyond repair, replacement
is necessary. This replacement must incorporate most native properties of tendon to restore
function. However, such transplantation is limited by the availability of viable autograft,
resulting in the use of synthetic materials which are unable to restore long term function due
to incompatibility. Thus, a need exists for replacements which incorporate as many native
properties as possible, necessitating a systematic study of engineered tendon.



Chapter 2

Preliminary Work

2.1 Mathematical formulation of growth

In the following sections, the basic dynamical equations of the continuum formulation de-
veloped from physical principles governing the behaviour of growing tissue are summarised!.
Section 2.1.1 helps define the system and introduces fundamental quantities characterising
it. Sections 2.1.2 and 2.1.3 present the balance of mass and balance of momenta respectively.
Section 2.1.4 describes the treatment of growth kinematics. Key concepts from thermody-
namics, the conservation of energy and the entropy inequality, are the subject of Section
2.1.5. Finally, the functional forms of the constitutive relations derived from the Clausius-
Duhem inequality are highlighted in Section 2.1.6.

2.1.1 Defining the system

The tissue of interest is an open subset of R® with a piecewise smooth boundary. At a
reference placement of the tissue, €y, points in the tissue are identified by their reference
positions, X € €)y. The motion of the tissue is a sufficiently smooth bijective map ¢ :
Qo x [0,T] — R®, where Qy = Qy U dQ. At a typical time ¢ € [0,T], ¢(X,t) maps
a point X to its current position, @. In its current configuration, the tissue occupies a
region €, = ¢,(€). These details are symbolised in Figure 2.1. The deformation gradient
F := GRAD|y] is the tangent map of ¢ (where GRADJe] is the gradient operator in the
reference configuration).

The tissue consists of numerous species, each designated as part of a certain representative
class—a solid phase, consisting of solid collagen fibrils, proteoglycans and cells, denoted by c,
a fluid phase denoted by f and typified by water bound loosely to proteoglycans, or a solute
phase, consisting of precursors to reactions, byproducts, nutrients, and other regulatory
chemicals, denoted by s. In what follows, an arbitrary species will be denoted by «¢.

The fundamental quantities of interest are mass concentrations of a species (the mass of

!Detailed derivations of the same can be obtained from [Garikipati et al., 2004].
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Figure 2.1: The continuum tissue with growing and diffusing species under stress.

the species per unit reference system volume), pf (X, ). Formally, these quantities can also
be thought of in terms of the maps pj : Qy x [0,7] — R. The formulation imposes some
smoothness requirements on the distributions of these concentrations. By definition, the
total material density of the tissue at a point is a sum of these concentrations over all species
> ph = po. Other than the solid phase, s, all phases have mass fluxes, M*. These are mass

flow rates per unit cross-sectional area in the reference configuration defined relative to the
solid phase. Except for the fluid phase, f, all phases have suitable mass sources/sinks, II*,
suitably encapsulating the complexity of the biochemistry.

2.1.2 Balance of mass for an open system
As a result of mass transport and inter-conversion of species introduced previously, the

concentrations, pf, change with time. In local form, the balance of mass for an arbitrary
species in the reference configuration is

9py
ot

— II' - DIV[M'], V4, (2.1)

recalling that, in particular, M® = 0 and II/ = 0. Here, DIV[e] represents the divergence
operator in the reference configuration. The functional forms of II* are chosen to represent
the biochemistry (which, for e.g., could additionally include the dependence of the rate of
tissue formation on the state of local stress, as in [Harrigan and Hamilton, 1993]) and the
fluxes, M*, are determined from the thermodynamically motivated constitutive relations
described in Section 2.1.6.

The behaviour of the entire system can be determined by summing Eq. (2.1) over all
species ¢. Additionally, sources/sinks satisfy the relation

» I =o, (2.2)

8



which is consistent with the Law of Mass Action for reaction rates and with mixture theory
[Truesdell and Noll, 1965].

Though it is not mathematically infeasible to solve the problem in terms of Eq. (2.1)
written out for the various species, it is important to note that soft tissues are capable of
undergoing considerable deformation. The current domain of the physical system, €2;, and
its boundary, change in time. In order to apply boundary conditions (either specification of
species flux or concentration) that are physical, it is straightforward to use the local form of
the balance of mass in the current configuration,

dp*
dt

= 7' —div[m'] — p'div[v], V¢, (2.3)

where p'(x,t), 7 (x,t), and m*(x, t) are the current mass concentration, source and mass flux
of species ¢ respectively. div[e] is the spatial divergence operator, and the time derivative on
the left hand-side in Eq. (2.3) is the material time derivative, that may be written explicitly
as %| x, implying that the reference position is held fixed.

Again, it must be emphasised that only the final forms of the equations are presented
here as a summary. Detailed derivations of the same are available in an earlier work
[Garikipati et al., 2004]. Additionally, in the interest of clarity, the descriptions in the sub-
sequent sections are entirely in terms of quantities in the reference configuration.

2.1.3 Balance of momenta

In real tissues, the terms that appear on the right hand-side in Eq. (2.1), the species pro-
duction rate and flux, are strongly dependent on the local state of stress. To correctly model
this coupling, the balance of linear momentum should be solved to determine the local state
of strain and stress.

As outlined in Section 2.1.1, the deformation of the tissue is characterised by the map
p(X,t). Recognising that the deposited solid collagen fibrils do not undergo mass transport,
the formulation uses the material velocity of this phase, defined by the relation V' = d¢p /0t
as a primitive variable for mechanics. The motion of the remaining species are split into
a deformation along with this solid phase, and mass transport relative to it. To this end,
analogous to M* in the balance of mass, it is useful to define the material velocity of a species
v relative to the solid skeleton as: V' = (1/ph)FM". Thus, the total material velocity of a
phase ¢ is V' + V*. Due to existence of multiple species, the total first Piola-Kirchhoff stress
tensor P is obtained by summing the partial stresses P* (borne by a species ¢) over all the
species present?. With the introduction of these additional quantities, the balance of linear
momentum in local form for a species ¢ in € is

0
Pog; (V + V') =y (g +q') + DIV[P'] — (GRAD [V + V']) M", (2.4)

2In reality, the amino acids, nutrients and regulators are in solution under low relative concentrations.
They do not bear any appreciable stress.




where g is the body force per unit mass, and q* is an interaction term denoting the force
per unit mass exerted upon ¢ by all other species present. The final term with the gradient
denotes the contribution of the flux to the balance of momentum. In practise, the relative
magnitude of the fluid mobility (and hence flux) is small, so the final term on the right hand
side of Eq. (2.4) is negligible, resulting in a more classical form of the balance of momentum.

The behaviour of the entire tissue is obtained by summing Eq. (2.4) over all the species
present. Additionally, recognising that the rate of change of momentum of the entire tissue
is affected only by external agents and is independent of internal interactions, the following
relation arises.

> (phg + 1V = 0. (2.5)

This is also consistent with classical mixture theory [Truesdell and Noll, 1965].

The balance of angular momentum in this formulation results in a symmetric Cauchy
stress tensor, o = o', mirroring the result obtained in classical continuum mechanics. This
is in contrast to the non-symmetric Cauchy stress arrived at in [Epstein and Maugin, 2000].
This difference appears to stem from their use of V' = 0 /0t as the material velocity of a
single species, rather than multiple species with material velocities V' + V*.

2.1.4 Kinematics: The elasto-growth decomposition

Figure 2.2: The kinematics of growth.

Local volumetric changes are associated with changes in the concentrations of species. The
material of the species swells with an increase in concentration, and shrinks as its concen-
tration decreases. Additional coupling between mass transport and mechanics stems from
this phenomena. This work’s treatment of the finite strain kinematics involves a decom-
position of the deformation gradient into a geometrically necessitated elastic deformation

10



accompanying growth, and an additional elastic deformation due to external stress. This
split is analogous to the classical decomposition of multiplicative plasticity [Lee, 1969] and
is similar to the approach followed in existing literature on biological growth (see, for e.g.,
[Taber and Humphrey, 2001, Ambrosi and Mollica, 2002]).

The split itself is visualised in Figure 2.2. Assuming that the volume changes associated
with growth described above are isotropic, a simple form for the growth deformation gradient
tensor is '8 = #‘;1, where pf (X) can be interpreted as an original reference state where
the species would be stress free in the absence of a deformation, and 1 is the identity
tensor. Additionally, this being a local definition, the action of F® alone can result in
incompatibility. To ensure compatibility, there is a further elastic deformation f’eb. Thus,
the total deformation gradient F' = FeFeLFgL, and internal stresses in the tissue arise due

~ et

to the compatibility restoring tensor F .

2.1.5 Thermodynamics: Balance of energy and the entropy in-
equality

In addition to the terms defined previously, we define the internal energy per unit mass of
species ¢, denoted e*; the heat supply to species ¢ per unit reference volume, r{; and the partial
heat flux vector of ¢, Q" on 2y. Since there are numerous species present, an interaction term
', which accounts for the internal energy transferred to ¢ by all other species, is also defined.
With these quantities defined, the local form of the balance of energy for an arbitrary species
L s

, Oe*

= P': GRAD [V + V'] = DIV [Q'] + pbr" + phé" — GRAD [¢'] - M". (2.6

As before, the behaviour of the entire tissue is obtained by summing Eq. (2.6) over all ¢ and
this also results in another relation relating the interaction energies to the interaction forces,
sources and relative velocities, identical to what is obtained in mixture theory.

Let n* be the entropy per unit mass of species ¢, and 6 the absolute temperature. The
entropy inequality holds for the system as a whole, and has the following form.

3 pé% >3 (% — GRAD [] - M — DNH[QL] + GRADH?] ' QL) L@

L

2.1.6 Functional forms of the constitutive relations

As is customary in field theories of continuum physics, we first obtain the Clausius-Duhem
inequality by multiplying Eq. (2.7) by the temperature 6 and subtracting it from Eq. (2.6).
Then, the internal energy of a species ¢ is assumed to be of a sufficiently general form:
et = e"(F°,ny, py). Substituting this in the Clausius-Duhem inequality and applying the

11



chain rule results in an inequality later specified constitutive relations must not violate.
Only the valid constitutive laws relevant to the examples that follow are listed here. For
details, see [Garikipati et al., 2004].

Most notably, the fluid flux relative to the collagen takes the form
M’ = D' (p[F'g+ F'DIV [P'] - GRAD [¢/ — 0n']) (2.8)

where D7 is the positive semidefinite mobility of the fluid and the temperature field is as-
sumed isothermal for physiological correctness. The terms in the parenthesis on the right
hand-side sum up to give the total driving force for transport. The first term is the contri-
bution due to gravitational acceleration. The second term arises from stress divergence. For
instance, fluid tends to move down a compressive pressure gradient. The third term can be
thought of as the gradient of a chemical potential. The included entropy gradient in this
term results in classical Fickean diffusion if only mixing entropy exists.

/

% |

Figure 2.3: Worm like chains assembled into an anisotropic eight-chain model.

A constitutive form for the partial stress of a species ¢ allowable by the Second Law of
Thermodynamics is that of a hyperelastic material: P* = pj 851);; F& " The fluid phase

is modelled as ideal and nearly incompressible which results in a stored energy function of
the form: pfé/ = %/i(det(Fef) — 1)%2. For the collagen phase, the continuum stored energy
function e¢ is based on the worm-like chain model. The model has been described and
implemented into an anisotropic representative volume element in [Bischoff et al., 2002]. In
summary, the strain energy density of a single constituent chain (see Figure 2.3) of the
eight-chain model is,

o (FE ) — NEko r_2+ L o
poett Pl = T \eL T 11— +/0) 4
Nk& 2A ]_ ]. 2 2 2
AL — = | log(AENEAT) (2.9
42L/A< )g(123) (2.9)

T "i0- e 1

+ L o)y 291 B

®
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where N is the chain density, k is Boltzmann’s constant, r is the end-to-end length of a chain,
L is the fully extended length and A is the persistence length which measures the degree
to which the curve departs from a straight line. The preferred orientation of the tendon
collagen is described by the anisotropic unit cell with sides a, b and ¢ (as in Figure 2.3).
The elastic stretches along the unit cell axes are denoted by A1, Ao, A3 and E® is the elastic
Lagrange strain of collagen. The factors § and ~ control bulk compressibility. The end to
end lengths are given by 7 = 21/a2A{" + 62X§” + 2\, and \§ = /N7 - C°N 1.

2.2 Numerical implementation

2.2.1 A brief look at the computational formulation

The theory presented in the preceding sections results in nonlinear coupled partial differential
equations that need to be solved. A finite element formulation employing a staggered scheme
based upon operator splits [Armero, 1999, Garikipati and Rao, 2001] has been implemented
in FEAP [Taylor, 1999] to solve the coupled problem. The basic solution scheme involves
keeping one of the fields, say the displacement field, fixed while solving for the other, the
mass transport problem in this instance. The resulting concentration field is then fixed to
solve the mechanics problem. This procedure is repeated until the resulting fields satisfy the
differential equations within some suitable tolerance.

The transient solution is obtained for mechanics using energy-conserving schemes as
detailed in [Simo and Tarnow, 1992|. Backward Euler is used as the time-stepping algorithm
for mass transport. Nonlinear projection methods [Simo et al., 1985] are used to treat the
near-incompressibility imposed by water. Mixed methods [Garikipati and Rao, 2001] are
used for stress/strain gradient driven fluxes.

2.2.2 Numerical example

The following example aims to demonstrate the mathematical formulation and aspects of the
coupled phenomena as the tissue grows. The model geometry, based on the engineered ten-
don constructs (see Figure 1.1), is a cylinder 12 mm in length and 1 mm? in cross-sectional
area. Only two phases—fluid and collagen—are included for the mass transport and mechan-
ics. The collagen is represented by the anisotropic worm-like chain model outlined previously
(see Section 2.1.6) and the fluid phase is modelled as ideal and nearly incompressible. The
parameters used in the analysis are as presented in Table 2.1. The values chosen are repre-
sentative of the kinds of biological systems we are working with. The classes of initial and
boundary conditions imposed are also based on physical experiments.

Since we only have two species and we want to demonstrate growth, an “artificial” fluid
sink II' is introduced following simple first order kinetics. The collagen source will be the
negative of the fluid sink: TIf = —&f(pf— p(f)ini); II¢° = —IIf, where k! is the reaction rate, and
pgini is the initial concentration of fluid. When pf > pgim, this acts as a source for collagen.

13



Parameter Symbol  Value Units

Chain density N 7 x 104 m3
Temperature 0 310.0 K
Persistence length A 1.3775 -
Fully-stretched length L 25.277 -

Unit cell axes a, b, c 9.3, 124, 6.2 —
Bulk compressibility factors v, B 1000, 4.5 —
Fluid bulk modulus K 1 GPa
Fluid mobility tensor D;j=Dé; 1x1078 m~2sec
Fluid conversion reac. rate kf —1.x 1077 sec™!
Gravitational acceleration g 9.81 m.sec 2
Fluid mol. wt. Mt 2.9885 x 1072 kg

Table 2.1: Material parameters used in the analysis.

f
The mixing entropy of fluid in the mixture with collagen is written as nr’;ix = —%log(ﬁ—g),
where M is the molecular weight of the fluid.

The boundary conditions simply corresponding to immersing the tendon in a nutrient
rich bath. The initial collagen concentration is 500 kg/m? everywhere and the fluid concen-
tration is 400 kg/m? everywhere. This is exposed to a bath where the fluid concentration is
500 kg/m?, so with these concentration boundary conditions set, nutrient rich fluid rushes
into the tissue, and growth occurs to form more collagen. The following plots present a few
results from the analysis.

Solid Conc. (kg/m"3)

4506402

458E+02

4.67E+02
»

»
5.25E402
5.33E+02
5.42E+02
5.50E+02

Figure 2.4: The collagen concentration (kg/m?) initially.

Figure 2.4 shows the initial collagen concentration in the tendon. After it has been
immersed in a nutrient rich bath for half an hour, the tendon has grown and the collagen
concentration is now higher as seen in Figure 2.5. On performing a simple uniaxial tension
test on the tendon before and after growth, it is observed that the grown tissue is stiffer and
stronger as seen in Figure 2.6. Additionally, the swelling of the tendon as it is immersed in
the bath takes place in two clear regimes as seen in Figure 2.7. There as an initial rapid
swelling in a diffusion dominated regime, and a slower growth dominated swelling later on.
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Figure 2.5: The collagen concentration (kg/m?) after 1800 seconds.
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Figure 2.6: The stress (Pa) vs extension (m) curves before and after growth.
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Figure 2.7: The volume of the tendon (m?) evolving with time.
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Chapter 3

Proposed Plan of Advancement

The following sections provide an abbreviated look at future directions we propose the current
framework and resulting numerical implementation evolve. Since each of these areas provide
extensive scope for development, the following exposition will keep returning to a common
theme—Dbetter represent the biochemistry—which also aids to relate these different areas.

3.1 Revisiting modelling choices

As has been described previously, growth in biological tissue depends upon cascades of
complex biochemical reactions involving several species. In the numerical example described
in Section 2.2.2, a simple first order rate law was used to define the collagen source term. In
order to better represent the biochemistry, it is appropriate to use more sophisticated forms
for the source. It is proposed that a few reasonable choices be implemented and the degree
to which the simulations reflect experiments be examined.

Two promising forms include enzyme kinetics [Michaelis and Menten, 1913],

HS S
s — Mpcella e = —IT°, (3.1)
Ve
where s stands for a solute phase, pen is the cell concentration and pf, = (k%ffl), where

k
ki, k_1 and ko are the rates of the following E + S RS2 E4P involving enzymes,

-1
substrates and products, and strain energy dependent forms weighted by relative densities

[Harrigan and Hamilton, 1993],
c __ pg —m %
II° = () ""¥p — Vg, (3.2)
P0;;
where U{ represents a basal value of the energy density.

These sorts of modelling choices were also made in other areas, for e.g., the selection of
a constitutive model for collagen stress based on a strain energy derived from the worm-like
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chain model. It is also of interest to evaluate other nonlinear anisotropic models, as well as
a more fundamental treatment where the point-wise anisotropic response is calculated from
orientations of fibrils at a finer scale. This can help tie in the parallel remodelling studies
into this model.

But returning to our central theme—Dbetter represent the biochemistry—we see that the
form of the source representing enzyme kinetics necessitates the introduction of at least one
other species, a solute phase, s. The resulting and necessitated refinements motivate the
next section.

3.2 Refining the formulation

In addition to being advected along with the fluid, the solute phase s can undergo transport
relative to the fluid. To this end, an additional velocity split V* = V* + V/, is introduced.
The constitutive relation for the corresponding flux, now M? has a form similar to that
defined for M". Initial attempts at introducing this species resulted in an advection-diffusion
equation that was unstable, and of a non-standard form. However, if the fluid is nearly
incompressible, which is the case in reality, it can be shown that the balance of mass in the
current configuration of the solute reduces to

dp®
dt

s : s ps
= —div (m*) — m/ - grad (p_f) : (3.3)
which has a standard advective-diffusion form, and thus it is amiable to documented stabil-
isation schemes, as seen in the next section.

Additionally, during the course of implementing the theory and solving initial-boundary
value problems, potential refinements to the existing formulation have made themselves
visible. Some of these changes include splitting permeability (stress-gradient driven) and
diffusion (Fickean) mobilities in the constitutive relation for mass transport, and introducing
a measure of saturation allowing greater control of the behaviour (for e.g., allowing swelling
arising from fluid concentration increases to turn on only after the volume in question is
fully saturated).

3.3 Numerical and computational aspects

As indicated in the preceding section, Eq. (3.3) can now be stabilised using standard methods
such as the SUPG (see, for e.g., [Hughes et al., 1987]). The implementation has not been
completed in the finite element code, but the unstable equation has been isolated and a
MATLAB prototype implementation exists (see Figures 3.1 and 3.2 for a comparison between
stabilised and non-stabilised forms for the simpler two-dimensional case) using ideas from
[Hughes et al., 1987].
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Figure 3.1: Advection-diffusion equation Figure 3.2: Advection-diffusion equation
solution with stabilisation term turned off solution with stabilisation term turned on

A robust implementation of this is proposed to be incorporated into the finite element
code. Furthermore, once the stability and rate of convergence of the algorithms for the
individual differential equations are optimal, it is of interest to learn the tools to analyse and
study the convergence of the overall coupled problem. Finally, the computational expense of
the problem at hand is daunting. This issue needs to be circumvented by a suitable parallel
implementation of FEAP or an externally interfaced solver.

3.4 Exploring applicability to other systems

This concluding section is not directly linked to the preceding sections.

While a substantial portion of effort in modelling the tendon system goes toward making
ideal modelling choices to tailor the continuum field formulation to better reflect the tissue,
the fundamental theory and physical principles employed are applicable to a large class of
multi-species open systems. These other areas of application exist both in biology (injury
mechanisms, wound healing, scarring, surgical repair, ...) as well as from other diverse
fields (from porous soil mechanics, to diffusion of air through anisotropic rubber materials
in automobile tyres).

With further enhancements to the theory and concurrent maturation of the resulting
computational framework, it is of future interest to explore the applicability of the theory
to these other classes of problems. If wound healing is of interest, for instance, as a first
step, it could be thought of as a signalled growth localised to certain regions. This could
conceivably be modelled using the existing framework by introducing an additional spatial
variable which basically functions as a Boolean flag, switching off growth in regions and
turning on growth where it is needed (near the site of the wound). Arriving at a small, but
varied, class of relevant problems and applying the theory to those cases will result in further
insight and additional inputs to the formulation.
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