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Describing the system

Engineered tendon construct [Calve et al., 2004]



Describing the system

Engineered tendon construct [Calve et al., 2004]

Cylinder: ∼ 12 mm long, 1 mm2 in cross section



Defining the problem

Growth/Resorption—An addition (or loss) of mass to the tissue

Increasing collagen concentration with age

[Calve et al.]



Defining the problem

Growth/Resorption—An addition (or loss) of mass to the tissue
Damage—Trauma resulting in considerable loss of tissue mass . . .

and sudden changes in material properties

Increasing collagen concentration with age

[Calve et al.] Damaged Ligament [Provenzano et al., 2003]



Factors affecting growth and healing

Chemical environment—Implantation [Calve et al.] Mechanics—Influence of cyclic load [Calve et al.]



Factors affecting growth and healing

Chemical environment—Implantation [Calve et al.] Mechanics—Influence of cyclic load [Calve et al.]

Increase in collagen content and microstructural distribution



∂ρι

∂t = Πι



Possibilities for interconversion laws

• Simple first order rate law –
Constituents either “solid” or “fluid”

Πf = −kf(ρf − ρf
ini), Πc = −Πf

• Strain Energy Dependencies –
Weighted by relative densities

Πc = ( ρc

ρc
0ini

)−mΨ0 − Ψ∗
0

[Harrigan & Hamilton, 1993]

• Enzyme Kinetics – Introducing
additional species to the mixture

Πs = (Πs
maxρs)

(ρs
m+ρs) ρcell, Πc = −Πs

[Michaelis & Menten, 1913]

• Cell Signalling – Preferential growth in
damaged regions

Π̃c = α Πc



Possibilities for interconversion laws

• Simple first order rate law –
Constituents either “solid” or “fluid”

Πf = −kf(ρf − ρf
ini), Πc = −Πf

• Strain Energy Dependencies –
Weighted by relative densities

Πc = ( ρc

ρc
0ini

)−mΨ0 − Ψ∗
0

[Harrigan & Hamilton, 1993]

• Enzyme Kinetics – Introducing
additional species to the mixture

Πs = (Πs
maxρs)

(ρs
m+ρs) ρcell, Πc = −Πs

[Michaelis & Menten, 1913]

• Cell Signalling – Preferential growth in
damaged regions

Π̃c = α Πc



Possibilities for interconversion laws

• Simple first order rate law –
Constituents either “solid” or “fluid”

Πf = −kf(ρf − ρf
ini), Πc = −Πf

• Strain Energy Dependencies –
Weighted by relative densities

Πc = ( ρc

ρc
0ini

)−mΨ0 − Ψ∗
0

[Harrigan & Hamilton, 1993]

• Enzyme Kinetics – Introducing
additional species to the mixture

Πs = (Πs
maxρs)

(ρs
m+ρs) ρcell, Πc = −Πs

[Michaelis & Menten, 1913]

• Cell Signalling – Preferential growth in
damaged regions

Π̃c = α Πc

Enzyme Kinetics

E + S
k1−−⇀↽−−
k−1

ES
k2−→ E + P

k1 - Association of substrate and enzyme

k−1 - Dissociation of unaltered substrate

k2 - Formation of product

ρs
m =

(k2+k−1)
k1

Πs
max

Πs
max
2

ρs →ρs
m

Π ↑
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Mass balance

X x

ϕ

Ω0
Ωt

N · M ι
n · mι

Πι πι

ρι – Species concentration
Πι – Species production
M ι – Species flux

• For a species: ∂ρι

∂t = Πι − ∇ · M ι

• Solid – No flux; no boundary conditions

• Fluid – No source; concentration or flux boundary conditions

• Solute – Flux and source; concentration boundary condition
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Constitutive relations for fluxes

• Compatible with dissipation inequality

• Fluid flux relative to collagen
M f = Df

(
ρfF T g + F T ∇ · P f − ∇φf

)
• Solute flux (proteins, sugars, nutrients, . . . ) relative to fluid

Ṽ
s

= V s − V f

M̃
s

= Ds (−∇φs)
• Df and Ds – Positive semi-definite mobility tensors

Magnitudes from literature:

◦ Fluid wrt solid: [Han et al., 2000]
◦ Solute wrt fluid [Mauck et al., 2003]
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Ṽ
s

= V s − V f

M̃
s

= Ds (−∇φs)
• Df and Ds – Positive semi-definite mobility tensors

Magnitudes from literature:

◦ Fluid wrt solid: [Han et al., 2000]
◦ Solute wrt fluid [Mauck et al., 2003]



Πc = ( ρc

ρc
0ini

)−mΨ0 − Ψ∗
0



M f = Df
(
ρfF Tg + F T∇ · P f − ∇φf

)



Momentum balance

X x

ϕ

Ω0
Ωt

N · M f
n · mf

g

qf

P N
σn

ρf – Fluid concentration
V – Solid velocity
V f – Fluid relative velocity
g – Body force
qf – Interaction force
P f – Partial stress

ρf ∂
∂t

(
V + V f

)
= ρf

(
g + qf

)
+ ∇ · P f−(∇(V + V f ))M f

For the fluid, velocity relative to the solid: V f = (1/ρf )F M f

[Garikipati et al., 2004]
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Constitutive relations for partial stress

Stress-strain response curves of self organized tendon [Arruda et al.]

• Hyper-elastic material compatible with dissipation inequality



Worm-like chain model based internal energy density

a

b

c

ρ̃cêc(F ec , ρc)

=
Nkθ

4A
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+
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+
γ

β
(Jeι−2β − 1) + 2γ1 : Eec

• Embed in multi chain model [Bischoff et al., 2002]

r = 1
2

√
a2λe2

1 + b2λe2
2 + c2λe2

3

• λe
I – elastic stretches along a, b, c
λe

I =
√

N I · CeN I



Growth kinematics
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• Isotropic swelling due to growth: F gι
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= F̄
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F̃

eι

; Internal stress due to F̃
eι

• Saturation and swelling
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Example of coupled computation – Healing

• Skin damage healing; Hypertrophic scarring

• First order chemical kinetics with cell signalling:
Πc = kf(ρf − ρf

ini)α
• Skin immersed in a fluid rich bath

Width = 2 mm, Height = 0.7 mm

Depth of damage = 2 mm



Example of coupled computation – Healing

• Skin damage healing; Hypertrophic scarring

• First order chemical kinetics with cell signalling:
Πc = kf(ρf − ρf

ini)α
• Skin immersed in a fluid rich bath

Width = 2 mm, Height = 0.7 mm

Depth of damage = 2 mm
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_________________ DISPLACEMENT 3  

               Time = 1.00E-01 s

Vertical displacement on reload; Isotropic case



Example of coupled computation – Healing

• Skin damage healing; Hypertrophic scarring

• First order chemical kinetics with cell signalling:
Πc = kf(ρf − ρf

ini)α
• Skin immersed in a fluid rich bath

Width = 2 mm, Height = 0.7 mm

Depth of damage = 2 mm
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Vertical reload; Isotropic case



Summary and further work

• Physiologically relevant continuum formulation describing
growth in an open system—consistent with mixture theory

• Easily extended to model simple damage healing

• Relevant contributors to growth and healing systematically
accounted for—biochemistry, mass transport, coupled
mechanics

• Gained insights into the problem
• The relative roles of these factors
• Influence of saturation on growth and diffusion
• Configuration choice and physical boundary conditions
• The kinematics challenges involved

• Revisit basic kinematic assumptions to enhance model
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Separator slide

You ought not to be here.



Saturation and Fickian diffusion

Configuration 1 Configuration 2

• Change in configurational entropy with distribution of solute
particles . . . if solvent is not saturated with solute



Saturation and Fickian diffusion

only possible configuration

• Saturated ⇒ single configuration ⇒ no Fickian diffusion

• Still have concentration-gradient driven transport due to
stress gradient contribution to flux


