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Action at a distance
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“Do not worry about your difficulties in mathematics, | assure you
that mine are greater.” — Einstein



A crash course on modern geometry and topology

e Spacetime: Curved, pseudo-Riemannian manifold with a
metric of signature (— + ++) = Charts and atlases allow us
to relate them to Euclidean spaces, R"

e Tensor: Multi-index object which transforms according to
Ail.“iq — il o e iq ll .« e ll kl.“kq
Ajl---jp o Xkl Xk’qul Yijll---lp

e Metric: Evolving, non-flat, symmetric, 2-index tensor, g,

. .. _ 1( 99 | Ogrs _ 99k
e Christoffel symbols: I'j;, = 3 <8wk T 50— Do
o Covariant derivative: Y!; = Y, + T ;' Y*
¢ Riemann curvature tensor:
RPo = 0,005 — 0,0, + 7. T —T° T}
ouv — Ypul ve vl puo PN VO VAT o
e Ricci tensor: R;j = R¥;

e Scalar curvature: R = R,
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Impossible to tell! = Principle of equivalence



A new basis for gravity

Gravity is the geometry of spacetimel!



A look at the field equations

System of second order, coupled, nonlinear PDEs:
Guo = ZET,,

G — Gravitational constant
¢ — Velocity of light
Einstein Tensor: G, = R, — %gwR
R, — Ricci tensor
R — Scalar curvature
Stress energy tensor: T, = (p +p)U, Uy + pgue
Assuming a perfect fluid with 4-velocity U*, for e.g.

Covariant divergence of G and T' = 0 = Conservation laws



A famous analytical solution

Working in a coordinate chart with (r,0, ¢, )

Spherically symmetric, static spacetime

General form of such a metric:
ds? = A (r)dr? + r2d6? + r?sin® 0d¢? + B (r) dt*
Vacuum field equations: R, =0 =

4AB* — 2rBAB + rABB +rB*A =0

rAB +2A2B — 2AB — rBA=0

—2rBAB +1rABB +1rB*A — 4BAB =0

Unique solution:
ds? = (1= 292) " dr? + 12(d0? + sin® 0dg?) — ¢ (1 — 252) di?
using the weak field approximation: ggg = —c? + —2C7’1m
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e FeTK: Open source finite element software libraries for solving
coupled PDEs on manifolds



The usefulness of it all

Better understanding of the physics of our universe
o Calculates precession of mercury's orbit correctly!

Simulations for gravitational wave detectors
o Recall this is a field theory, no action at a distance

Physics of black holes

o Accretion disk evolution around black holes
o Jet formation near black holes

Relativistic flows: Jets, Shocks
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